Mathematik Übungsprogramm ~ Brigitte Körber, Liechtensteinstrasse 47 ~ 2344 Maria Enzersdorf ~ brigitte.koerber@aon.at

              

                    

           6. Schulstufe  (2. Klasse)

                      

                              I N H A L T S V E R Z E I C H N I S

 

             1.    WIEDERHOLUNG 

 

 

                         a)    Die 4 Grundrechnungsarten   (und Textbeispiele)

                         b)    Verbindung der 4 Grundrechnungsarten

                                (Rechengesetze, Vorrangregeln)

                        c)     Der Mittelwert                  

                        d)     Rechteck und Quadrat  (und Textbeispiele)        

                        e)     Quader und Würfel  (und Textbeispiele)

 

 

                 2.     TEILBARKEIT  NATÜRLICHER  ZAHLEN  

 

 

              3.    DIE  BRUCHRECHNUNG    

 

 

                     EINFÜHRUNG  IN  DIE  BRUCHRECHNUNG

 

 

                           a)     Wiederholung aus der 1. Klasse: Brüche und Dezimalzahlen     

                             Wandle die Brüche in Dezimalzahlen um und umgekehrt

                     b)     Jede Division kann als Bruch angeschrieben werden       

                 und umgekehrt

         c)     Jeder unechte Bruch kann in eine gemischte Zahl

                 verwandelt werden

         d)     Jede gemischte Zahl kann als unechter Bruch       

                 angeschrieben werden

         e)     Wir erweitern Brüche  

         f)     Wir kürzen Brüche  

         g)     Bruchteile von Größen 

         h)     Wir machen Brüche gleichnamig und vergleichen ihre Größe 

         i)      Periodische Dezimalzahlen  

 

                 4.1   RECHNEN  MIT  BRÜCHEN ( und Textbeispiele) 

 

 

                           a)    Addieren und Subtrahieren

                           b)    Multiplizieren und Dividieren

                           c)    Vermischte Aufgaben

                           d)    Schlussrechnungen

 

 


                  4.2    RECHNEN  MIT  DEZIMALZAHLEN  UND BRÜCHEN  

 

              

              4.3    DIE  VERBINDUNG  DER  4  GRUNDRECHNUNGSARTEN

 

                                            

                                        

              5.a    GLEICHUNGEN  (und Textbeispiele) 

 

      

             

              5.b    UNGLEICHUNGEN 

 

 

              6.      GANZE  ZAHLEN  -  Z 

 

                          

              7.      DIREKTE  UND  INDIREKTE  PROPORTIONALITÄT  -  Vermischte Aufgaben

 

     

 

              8.      PROZENTRECHNUNGEN  Vermischte Aufgaben  

 

     

 

                  9.      DREIECKE  

                

                             a)  Der Flächeninhalt des rechtwinkligen Dreieck

                             b)  Der Flächeninhalt des gleichseitigen Dreiecks

                             c)  Der Flächeninhalt des gleichschenkligen Dreiecks

                             d)  Flächeninhalt des allgemeinen Dreiecks

                           e)  Höhenschnittpunkt (H), Inkreismittelpunkt (I),

                                  Umkreismittelpunkt (U), Schwerpunkt (S)

                                  Kongruenzsätze, Satz von Thales

               

  10.       WINKEL

                       Winkelpaare in besonderer Lage, Winkel zeichnen, Rechnen mit Winkelmaßen,                        

                      Parallelwinkel, Normalwinkel, Kreis,Tangente, Sekante, Passante, Sehne

           

             11.     DATEN  ERSTELLEN

                       Säulendiagramm, Balkendiagramm, Streckendiagramm, Kreisdiagramm

 

                 

            12.     VIERECKE  UND  VIELECKE      

 

                             a)  Der Flächeninhalt des Parallelogramms

                             b)  Der Flächeninhalt des Rhombus (Raute)

                             c)  Der Flächeninhalt des Trapezes

                             d)  Der Flächeninhalt von Vierecken und zusammengesetzten Figuren

                                      

 

                  13.      DAS  KOORDINATENSYSTEM   

                         Figuren zeichnen und ihren Flächeninhalt berechnen

                         Kongruente Figuren, Spiegelung und Schiebung von Figuren und Strecken

                 

              14.     PRISMEN  (und Textbeispiele)

 

                  15.    VIELE  BEISPIELE  FÜR  SCHULARBEITEN

 

                  

                             Vermischte Aufgaben:  Rechengesetze, Gleichungen, ggT, kgV,

                        Textbeispiele, Rechnen mit Brüchen, Vierecke und Vielecke,

                        Mittelwert,  Zusammengesetzte Figuren, Quadrat, Rechteck, Ganze Zahlen,

                        Würfel, Quader, Prismen, Prozentrechnungen, Winkelmaße,..                                                                    

 

                      

 

     

                  

 

               

 

 


 

 

            

 

                  Hier einige Auszüge aus dem Angabenbuch und Lösungsbuch:

  

            Hier sind nur die Übungsbeispiele mit Rechengang angegeben.

            Die Einführungsbeispiele  - wie in einer Unterrichtsstunde erklärt  -

            sind im Lösungsbuch unter "Erklärung" zu finden.

 

                   Im Angabenbuch steht:  

 

8)     Frau Schneider hat ein Gehalt von  1 800 €. Das Gehalt wird

         um  3 % erhöht.  Wie hoch ist das Gehalt nach der Erhöhung?

 

 

                   Im Lösungsbuch steht:

 

 8)     Frau Schneider hat ein Gehalt von  1 800 €. Das Gehalt wird

          um  3 % erhöht.  Wie hoch ist das Gehalt nach der Erhöhung?

 

                            100 %..................1 800 €            

                       103 %.........................x €          Das Gehalt beträgt 1 800 €, das

                                                                         sind  100 %. Da es um  3 % erhöht

                                                                         wurde, beträgt es nun  103 % !

                        x    =    1 800 . 103                                               

                              100

  

                        x    =    1 854

 

                   Das Gehalt beträgt nach der Erhöhung  1 854 €.

 

 


 

 

                     Im Angabenbuch steht:

 

 

  2)   Für einen Getreideanbau benötigt man 1,9 kg Saatgut für 1 a .

        Wie viel a können mit 170 kg Saatgut bebaut werden? (2 Dez.)

 

 

                  Im Lösungsbuch steht:

 

  2)   Für einen Getreideanbau benötigt man 1,9 kg Saatgut für 1 a .

        Wie viel a können mit 170 kg Saatgut bebaut werden? (2 Dez.)

 

1 a.................. 1,9  kg

? a...................170 kg

 

                   170 : 1,9 =    / 10

                 1700 : 19  =  89,47

                   180

                     090

                       140

                         07 R

 

Mit 170 kg Saatgut können  89,47 a  bebaut werden.

 


 

Im Angabenbuch steht:

 

 

            10.  Herr Müller hat  2 Wiesen angeboten. Die eine ist 28 m im Quadrat, 

                   die andere ist ein 26,4 m langes und  23,6 m breites Rechteck.

                   Herr Müller wählt die größere Wiese.

                   Welche ist das, und um wie viel m² ist sie größer?

 

 

 

Im Lösungsbuch steht:

 

 

            10.  Herr Müller hat  2 Wiesen angeboten. Die eine ist 28 m im Quadrat, 

                   die andere ist ein 26,4 m langes und  23,6 m breites Rechteck.

                   Herr Müller wählt die größere Wiese.

                   Welche ist das, und um wie viel m² ist sie größer?

 

                   1. Wiese:

 

                    s  =  28 m                        A  =  s s

                    A =  ? m²                         A  =  28 28                          

                                                            A  =  784                                                                               

                   2. Wiese:  

                                        

                    l   =  26,4 m                   A  =   l b                         784,00

                    b  =  23,6 m                   A  =  26,4 23,6          -    623,04                

                    A =  ? m²                       623,04                     160,96

 

                   Herr Müller wählt die 1. Wiese, weil sie um  160,96 m²

                   größer ist.      

 

 


 

 

                      Im Angabenbuch steht:

 

 

           12.   QUADER (Umkehraufgabe)

 

          V  =  2 772,516 m³                                  

          b   =  25,7 m                                         

          h   =  5,8 m            

          l    =  ? m                                            

                                                                     

                                                

      

                    Im Lösungsbuch steht:

 

            12.   QUADER (Umkehraufgabe) 

 

           V   =  2 772,516 m³                                   V  =  l b h    / : (b h) 

           b   =  25,7 m                             V  :  (b h)   =  l            

           h   =  5,8 m             2 772,516 : (25,7 5,8)  =  l

           l    =  ? m                2 772,516 :     149,06     =  l                              

                                                                      18,6    =  l

 

                     Die Länge des Quaders beträgt 18,6 m.

 

 


 

                    Im Angabenbuch steht:

 

 

           21.     Ein Quadrat (s  =  18 cm)  hat den gleichen Flächeninhalt wie ein

             Rechteck mit der Breite 12 cm.

             Sind die Figuren auch umfangsgleich?

 

 

                  Im Lösungsbuch steht:

 

 

           21.     Ein Quadrat (s  =  18 cm)  hat den gleichen Flächeninhalt wie ein

             Rechteck mit der Breite  12 cm.

             Sind die Figuren auch umfangsgleich?

 

            Quadrat:                              Rechteck:

                                    

            s    =  18 cm                           b  =  12 cm                         

                    A   =  ? cm²                            l   =  ? cm

                    u    =  ? cm                             u  =  ? cm

 

                   A  =  s s                                      A   =   l b     / : b

                   A  =  18 18                        A   :   b   =   l

                   A  =  324                           324  :  12  =   l

                                                                        27  =   l

                                                           

 

                  Die Länge des Rechtecks beträgt 27 cm.

 

                   u  =  s 4                                     u  =  (l + b) 2

                   u  =  18 4                                   u  =  (27 + 12) 2

                   u  =  72                                        u  =  39 2

                                                                       u  =  78

 

                   u (Rechteck)    -    u (Quadrat)   =     78  -  72  =  6  

 

                   Die Umfänge sind nicht gleich. 

 

                   Der Umfang des Rechtecks ist um 6 cm länger.

 


 

                   Im Angabenbuch steht:

 

 

                Rechne folgende Gleichung mit Probe: 

 

                12)      2 x + 10    =  4 x – 12            

                

                      

 

                Im Lösungsbuch steht:

 

 

                Rechne folgende Gleichung mit Probe:

 

                12)   2 x + 10    =  4 x – 12   / - 2 x  / + 12        Probe:  2 11 + 10   =  4 11 – 12

                         10   + 12    =  4 x – 2 x                                               22  + 10    =   44    -  12

                                    22   =  2 x    / : 2                                                           32  =  32

                                    11   =  x

 

                

 


 

 

 

              Im Angabenbuch steht:

 

             Ordne die Zahlen der Größe nach!

              Beginne mit der kleinsten Zahl!

              

              a)    0,3       ;    0,03    ;    0,003     ;    0,04                                

                

 

             Im Lösungsbuch steht:

         

              Ordne die Zahlen der Größe nach!

             

         Beginne mit der kleinsten Zahl!

            

               a)    0,3       ;    0,03    ;    0,003     ;    0,04                                

                    (0,300    ;    0,030   ;    0,003     ;    0,040)            

                                                                                         

                                                                                         0,003                                                             0,003   <    0,03    <   0,04      <    0,3

                                       

 

                                      Eine gute Hilfe:

                   

                    Wenn du nur eine oder 2 Dezimalstellen hast, dann hänge

                    2 bzw. 1 Null an.  Diese Hilfe findest du in der Klammer.

                    Nutze diese Hilfe bei allen folgenden Beispielen!


 

 

          Im Angabenbuch steht:

 

           Ein Stahlblech von  5 mm  Dicke ist  3 m  lang und  80 cm  breit.

           Wie viel  kg  wiegt das Stahlblech, wenn seine Dichte  6,45 kg/dm³  beträgt?

 

 

 

           Im Lösungsbuch steht:

          

          Ein Stahlblech von  5 mm  Dicke ist  3 m  lang und  80 cm  breit.

           Wie viel  kg  wiegt das Stahlblech, wenn seine Dichte  6,45 kg/dm³  beträgt?

 

            Quader:            (Achte immer auf gleiche Benennung!)

 

             l   =  3 m  =  300 cm                          V  =   l b h

             b  =  80 cm                                        V  =  300    80    0,5

             d  =  h  =  5 mm  =  0,5 cm                V  =  12 000 cm³  =  12 dm³

             r  =  6,45 kg/dm³

             V  =  ? dm³

             m  =  ? kg                                          m  =  V r

                                                                       m  =  12 ∙ 6,45

                                                                       m  =  77,4 kg

 

             Das Stahlblech wiegt  77,4 kg.


 

 

Zurück zur Homepage